Synthesis and Functionalization of Organophosphorus-Substituted Amines with PCH₂NH Fragments

Andrey A. Prishchenko, Mikhail V. Livantsov, Olga P. Novikova, Ludmila I. Livantsova, and Valery S. Petrosyan

Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, 119991, Russia

Received 11 November 2009; revised 11 March 2010

ABSTRACT: The convenient procedures for the synthesis of new organophosphorus-substituted amines with the PCH₂NH moiety are proposed, starting from the derivatives of organophosphorus PH-acids, as well as 1,3,5-trisubstituted hexahydro-1,3,5-triazines as aminomethylating reagents. Various reactions of functionalization (such as acylation, carboxyethylation, pyridylethylation, and aminoethylation) of the obtained organophosphorus-substituted amines are presented. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:236–241, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20602

INTRODUCTION

Organophosphorus-substituted amines and their derivatives are widely known as interesting biomimetics of amino acids that are also of great interest as biologically active compounds and promising polydentate ligands [1,2]. So organophosphorus-substituted amino acids (*N*-phosphonomethyl glycine, 2-aminoethylphosphonic acids, and phosphinothricin) are well-known plant-growth regulators [1,2], and pyridine-containing organophosphorus-substituted amines are the effec-

tive agents for the treatment of bone diseases [3]. In this work, we propose a convenient way for synthesis of new organophosphorus-substituted amines and amino acids with the PCH₂NH moiety using symmetrical 1,3,5-trisubstituted hexahydrotriazines as aminomethylating reagents, which were previously used in the several reactions of aminomethylation (cf. [5–8]). We also found that synthesized amines are the unique organophosphorus synthons to obtain their functionalized derivatives of various structures via acylation, carboxyethylation, pyridylethylation, and aminoethylation of the PCH₂NH fragments.

RESULTS AND DISCUSSION

Thus an excess of diethyl phosphite and *O*-alkyl methylphosphonites easily react with symmetrical 1,3,5-trisubstituted hexahydrotriazines **A** on heating to 120°C with formation of aminomethylphosphonates **1–6** or aminomethylphosphinates **7–12** which may include glycine or β -alanine fragments (Eq. (1)).

 $[\]begin{split} R = & Me~(1,7), Et~(2,8), CH_2 = CHCH_2~(3,9), Bu~(4,10), CH_2 COOEt~(5,11), (CH_2)_2 COOEt~(6,12); \\ R^1 = Et~(7-10), \textit{i-Pr}~(11,12). \end{split}$

Correspondence to: Andrey A. Prishchenko; e-mail: aprishchenko@yandex.ru.

Contract grant sponsor: Russian Foundation for Basic Research.

Contract grant number: 08-03-00282.

^{© 2010} Wiley Periodicals, Inc.

Under the same conditions, the reaction of PH-acids with corresponding triazine **B** results in formation of phosphorus-substituted pyrrolidones **13** and **14**, which are the products of cyclization of intermediate phosphorus-substituted γ -aminobutyric acid esters **C** (Eq. (2)).

 $R = (CH_2)_3COOMe$, $P = (EtO)_2P(O)$ (13), Me(i-PrO)P(O) (14).

(2)

Phosphorus-substituted pyrrolidones 13,14 were also specially prepared in high yield by reactions of *N*-chloromethylpyrrolidone with triethyl phosphite or *O*,*O*-diisopropyl methylphosphonite in methylene chloride (Eq. (3)).

Phosphorus-substituted amines and amino acids involving the NH group are the suitable reagents for the synthesis of various functionalized organophosphorus compounds with PCH₂N moieties, which are interesting as prospective ligands with a chelating structure. So phosphonates **1–3,5** are easily formylated and acylated with formation of phosphorussubstituted amides **15–21** (cf. [9]; Eq. (4)).

$$(EtO)_{2}PCH_{2}N(R)CHO \xrightarrow{HCOOH} 1-3,5 \xrightarrow{Ac_{2}O} (EtO)_{2}PCH_{2}N(R)Ac$$

O
15,16,20
$$1-3,5 \xrightarrow{Ac_{2}O} (EtO)_{2}PCH_{2}N(R)Ac$$

O
17-19,21

 $R = Me (16,17), Et (18), CH_2CH=CH_2 (16,19), CH_2COOEt (20,21)$

(4)

Also we performed successful carboxyethylation and pyridylethylation of phosphorus-substituted methylamines including PCH₂NH groups, aiming to prepare promising polyfunctional compounds. So the reaction of phosphonates **1–4** and phosphinates **7–10** with acrylic acid easily proceeds in methylene chloride and yields after treatment of the reaction mixture with bis(trimethylsilyl)amine phosphonates **22–25** or phosphinates **26–29** with β -alanine fragments (Eq. (5)).

Here we also showed that phosphorus-substituted methylamines **1–3** containing NH groups smoothly add to 2- and 4-vinylpyridines in the presence of acetic acids to give pyridine-containing aminomethyl phosphonates **30–35** in high yields (Eq. (6)). Note that 6-methyl-3-vinylpyridine does not react with amines **1–3** under these conditions, because of the low activity of 3-vinylpyridine and its derivatives in pyridylethylation of compounds with the labile hydrogen atom [10].

The sufficiently nucleophilic amines **1–5** react with phosphorylated aziridine **D** at 130° C via a threemembered ring opening to form bisphosphorylated ethylenediamines **36–40**, containing P–C and P–N bonds with a good yields (Eq. (7)).

$$\begin{array}{cccc} R & R \\ (EtO)_{2}PCH_{2}NH & + \swarrow NP(OEt)_{2} & \longrightarrow & (EtO)_{2}PCH_{2}N(CH_{2})_{2}NHP(OEt)_{2} \\ O & O & O \\ 1-5 & D & 36-40 \end{array}$$

$$R = Me (36), Et (37), CH_{2}CH=CH_{2} (38), Bu (39), CH_{2}COOEt (40).$$

(7)

Hence aziridine **D**, which was prepared by a simple procedure developed in [11], can be used as a convenient synthon in various aminoethylation reactions (cf. [12,13]).

The novel organophosphorus amines 1–12, 22– 40, and amides 13–21 present interest as potentially useful compounds (cf. [14,15]). The structures of organophosphorus-substituted amines and

No.	Yield (%)	Bp (°C) (p, mmHg)	n _D ²⁰	$\delta(H) C^1 H_2 d$	² J _{PH}	$\delta(C^1) d$	$^{1}J_{PC}$	$\delta(C^2) d$	³ J _{PC}	δ _P s ^b
1	79	80 (2)	1.4380	2.79	12.0	47.58	153.4	37.83	15.2	23.08
2	83	92 (1)	1.4374	2.81	12.8	45.72	154.4	45.76	16.0	23.78
3	85	93 (1)	1.4515	2.81	12.4	44.77	157.4	53.46	15.5	23.69
4	87	95 (1)	1.4410	2.82	12.4	45.97	153.8	51.24	16.2	23.70
5	81	133 (2)	1.4469	2.93	12.4	44.78	156.5	51.34	13.6	22.90
6	78	144 (2)	1.4475	2.80	12.0	45.38	153.9	46.74	15.5	23.24
7	74	89 (2)	1.4378	С	С	49.47	105.7	39.10	15.2	47.09
8	78	98 (2)	1.4410	С	С	48.83	106.0	46.01	15.7	47.34
9	81	112 (2)	1.4600	С	С	47.92	107.2	53.89	15.5	47.54
10	80	109 (2)	1.4482	С	С	48.97	105.9	51.09	15.9	47.52
11	86	128 (1)	1.4555	2.80	11.2	48.48	106.7	51.62	14.2	46.35
12	82	138 (1)	1.4575	2.66	11.2	48.96	106.0	47.00	15.5	46.47

TABLE 1 Yields, Products Constants, and NMR Spectral Data (δ , ppm; J, Hz) for the PC¹H₂NC² Fragments^a of Amines **1–12**

^aAll signals of alkyl and vinyl fragments are in the standard area. In ¹H NMR spectra, fragments NH for all compounds looklike bright signals at 1.6–2.4 ppm. In ¹³C NMR spectra, fragment C=O for compounds, δ_{C} , ppm, s: **5**, 171.95; **6**, 172.16; **11**, 171.96; **12**, 172.15. Fragment PCH₃, δ , ppm (*J*, Hz), for compounds; **7**: δ_{H} , 1.22 d, ²*J*_{PH} 13.6, δ_{C} 12.49 d, ¹*J*_{PC} 91.2; **8**: δ_{H} , 1.26 d, ²*J*_{PH} 14.0, δ_{C} 12.79 d, ¹*J*_{PC} 91.5; **9**: δ_{H} , 1.25 d, ²*J*_{PH} 13.8, δ_{C} 12.87 d, ¹*J*_{PC} 92.0; **10**: δ_{H} , 1.24 d, ²*J*_{PH} 14.0, δ_{C} 12.83 d, ¹*J*_{PC} 91.9; **11**: δ_{H} , 1.29 d, ²*J*_{PH} 14.0, δ_{C} 13.20 d, ¹*J*_{PC} 92.9; **12**: δ_{H} , 1.24 d, ²*J*_{PH} 14.0, δ_{C} 13.20 d, ¹*J*_{PC} 92.7. ^bData of ³¹P{¹H} spectra.

^cIn ¹H NMR spectra, the signals of the diastereotopic protons of methylene groups C¹H₂ of **7–10** are the characteristic ABX multiplets at 2.6–2.8 ppm.

amides **1–40** were confirmed by the ¹H, ¹³C, and ³¹P NMR spectra, which show characteristic signals of the PC¹H₂NC², PC¹H₂N(C²)C³(O), PC¹H₂N(C²)C³H₂-C⁴H₂C⁵, and P¹C¹H₂N(C²)C³H₂C⁴H₂NHP² fragments (see Tables 1–4). The elemental analysis data of synthesized compounds are summarized in Table 5.

EXPERIMENTAL

The ¹H, ¹³C, and ³¹P NMR spectra were registered on the Varian VXR-400 and Bruker Avance-400 spectrometer (400, 100, and 162 MHz, respectively) in CDCl₃ against TMS (¹H and ¹³C) and 85% H_3PO_4 in

TABLE 2 Yields, Products Constants and NMR Spectral Data (δ , ppm; *J*, Hz) for the PC¹H₂N(C²)C³(O) Fragments^{*a*} of Amides **13–21**

No.	Yield (%)	Bp (°C) (p, mmHg)	n_D^{20}	$\delta(H) C^1 H_2 d$	² J _{PH}	δ (C ¹) d	$^{1}J_{PC}$	$\delta(C^2) s$	$\delta(C^3) s$	$\delta^b_P \ s^c$
13	89	139 (0.5)	1.4706	3.59	10.8	38.50	155.9	47.69	174.05 ^d	19.26
14	87	119 (0.5)	1.4846	е	е	43.04	103.7	48.03	173.92	43.21
15	74	120 (1)	1.4572	3.25	11.2	38.37	155.2	34.38	161.23	18.61 (80)
				3.17	10.0	43.93	158.0	30.12	161.99	18.21 (20)
16	78	140 (3)	1.4595	3.33	11.2	35.74	156.2	49.22	161.62	18.81 (85)
				3.20	10.0	40.99	158.8	44.47	161.70	18.35 (15)
17	80	154 (4)	1.4555	3.45	10.8	41.47	154.9	36.23	169.21	19.76 (85)
				3.31	10.4	45.93	158.2	33.80	169.65	18.47 (15)
18	81	165 (4)	1.4565	3.23	11.2	38.30	156.0	42.34	168.22	19.76 (70)
				3.11	10.0	42.88	158.1	40.13	168.66	18.66 (30)
19	82	132 (1)	1.4662	3.76	10.8	40.18	155.3	51.26	169.75	19.87 (75)
				3.42	9.6	43.59	158.0	48.21	169.65	19.38 (25)
20	74	178 (2)	1.4592	3.46	10.8	37.04	156.2	47.99	162.42 ^d	17.89 (55)
				3.37	9.6	42.29	159.0	43.71	162.58 ^d	18.39 (45)
21	83	181 (2)	1.4580	3.24 3.15	10.4 10.0	39.84 44.24	156.7 159.7	46.69 49.45	167.84 167.82	19.07 (60) 18.22 (40)

^aAll signals of alkyl and vinyl fragments are in the standard area. In ¹H NMR spectra, fragment NCHO for compounds, δ_H , ppm, s: **15**, 7.55 and 7.54; **16**, 7.72 and 7.69; **20**, 7.71 and 7.75. Fragment PCH₃ for compound **14**, δ , ppm, d, *J*, Hz: δ_H 1.25, ²*J*_{PH} 14.0, δ_C 14.34 d, ¹*J*_{PC} 90.0. In ¹³C NMR spectra, fragment C(O)O for compounds, δ , ppm, d: **20**, 168.18 and 167.48; **21**, 169.60 and 169.93.

^bAccording to the NMR spectra, the amides **15–21** are the mixtures of two stereoisomers, and their ratio was determined from the ¹H and ³¹P NMR spectra. The spectral parameters of the major isomer are given first.

^eThe overlapping ABX multiplets at the range 3.1–3.6 ppm.

^cData of ³¹P{¹H} spectra.

^{*d*}d, ³*J*_{PC}, Hz for compounds: **13**, 3.2; **20**, 3.0 and 3.3.

No.	Yield (%)	Вр (° С) (р, ттНд)	n_D^{20}	$\delta(H) C^1 H_2 d$	² J _{PH}	δ(C ¹) d	$^{1}J_{PC}$	δ(C ²) d	³ J _{PC}	δ(C ³) d	³ J _{PC}	$\delta(C^4) s$	δ(C ⁵) s	δ _P s ^b
22	87	145 (2)	1.4398	2.63	10.8	53.48	161.0	43.79	4.4	54.94	13.3	34.75	172.42	21.99
23	84	141 (1)	1.4374	2.78	10.4	49.79	161.7	49.34	7.1	50.76	9.5	34.59	172.55	24.53
24	86	162(3)́	1.4485	2.75	10.4	49.57	159.6	58.62	6.9	51.01	9.0	34.59	172.48	22.16
25	89	168 (3)	1.4445	2.71	10.4	50.43	159.8	55.45	8.8	51.35	8.8	34.61	172.64	22.37
26	83	143 (2)	1.4489	С	С	50.70	112.9	43.93	3.9	55.61	13.3	34.52	172.41	49.10
27	81	154 (2)	1.4479	С	С	53.32	113.7	49.41	6.2	54.04	9.6	34.64	172.59	51.20
28	87	164 (2)	1.4545	С	С	52.86	112.6	58.68	6.3	51.35	9.4	34.57	172.47	47.07
29	90	180 (3)	1.4459	С	С	53.84	113.1	55.59	6.3	51.53	9.9	34.45	172.61	47.27
30	64	160 (1)	1.4881	2.72	11.2	53.76	162.0	43.96	6.1	59.37	13.3	36.46	160.64	21.52
31	70	162 (1)	1.4920	2.76	10.8	50.06	161.8	49.14	7.9	55.03	8.8	36.14	160.89	22.33
32	72	163 (1)	1.4975	2.82	10.4	49.68	161.7	58.41	7.9	55.30	8.4	36.25	160.78	22.29
33	61	158 (1)	1.4895	2.64	11.1	55.45	162.7	43.87	8.1	59.78	12.1	33.16	149.31	21.87
34	68	160 (1)	1.4935	2.71	10.8	49.79	162.4	49.07	9.8	32.93	7.4	32.93	149.26	22.16
35	71	163 (1)	1.4975	2.75	10.4	49.55	161.2	58.33	9.7	55.56	7.6	32.82	149.10	22.05

TABLE 3 Yields, Products Constants, and NMR Spectral Data (δ , ppm, J, Hz) for the PC¹H₂N(C²) C³H₂C⁴H₂C⁵ Fragments^a of Functionalized Amines **22–35**

^aAll signals of alkyl, vinyl, pyridyl, and trimethylsilyl groups are in the standard area. The ¹H NMR spectra of others fragments show expected signals that look like sometimes as overlapping multiplets. In ¹H NMR spectra, fragments PCH₃ for all compounds **26–29** appear as doublets ($^{2}J_{PH}$ 14.0 Hz) with the same chemical shift (δ_{H} 1.25 ppm). In ¹³C NMR spectra, fragments PCH₃ for compounds δ_{C} , ppm, d, ¹ J_{PC} , Hz: **26**, 13.03, 92.6; **27**, 13.04, 91.6; **28**, 13.12, 92.2; **26**, 13.08, 91.4.

^bData of ³¹P {¹H} spectra.

^c The overlapping ABX multiplets.

 D_2O (³¹P). All reactions were carried out under dry argon in anhydrous solvents. The starting derivatives of trivalent organophosphorus acids and symmetrical 1,3,5-trisubstituted hexahydrotriazines were prepared as described in [7,16].

Starting *N*-(*diethoxyphosphoryl*)*aziridine* (**D**) was prepared according to [11]. Yield 83%, bp 74°C (1 mm), n_D^{20} 1.4350. PNCH₂ group: ¹H NMR spectrum: δ_H 1.83 ppm, d (²J_{PH} 15.6 Hz); ¹³C NMR spectrum: δ_C 23.87 ppm, d (²J_{PC} 7.2 Hz); ³¹P NMR spectrum: δ_P 13.37 ppm, s.

O,O-Diethyl N-methylaminomethylphosphonate (1). A mixture of 21 g of diethyl phosphite and 4.9 g of 1,3,5-trimethylhexahydrotriazine was heated at 110° C for 2 h and then distilled to give 16.3 g of phosphonate 1.

Phosphonates **2–6**, phosphinates **7–12**, and phosphorylated pyrrolidones **13,14** were prepared similarly. Yields for compounds: **13**, 59%; **14**, 52%.

*O,O-Diethyl (2-Oxopyrrolidin-1-yl)methylphosphonate (***13***).* To solution of 10 g of triethyl phosphite

TABLE 4 Yields, Products Constants, and NMR Spectral Data (δ , ppm; *J*, Hz) for the P¹C¹H₂N(C² H_n)C³H₂C⁴H₂NHP² Fragments^{*a*} of Ethylenediamines **36–40**

No.	Yield (%)	Bp (° C) (p, mmHg)	n _D ²⁰	$\delta(H) C^1 H_2 d$	² J _{PH}	$\delta(H)C^2H_n$	³ Ј _{НН}	$\delta(H) C^3 H_2 t$	³ Јнн	δ(H) NH dt	² J _{PH}	³ Јнн
36	64	165 (1.5)	1.4510	2.64	10.4	2.26 s	_	2.53	6.4	4.58	11.6	6.4
37	68	172 (1.5)	1.4545	2.69	10.0	2.52 k	7.2	2.61	6.6	4.70	12.0	6.4
38	66	185 (2)	1.4610	2.74	10.0	3.15 d	6.4	2.66	6.4	4.71	12.0	6.4
39	70	165 (0.5)	1.4490	2.70	10.0	2.46 t	7.4	2.63	6.4	4.62	12.1	6.4
40	69	220 (2)	1.4570	3.06	9.6	3.56 s	-	2.82	6.0	4.65	11.6	6.4
No.	$\delta(C^1) d$	$^{1}J_{\rm PC}$	$\delta(C^2) d$	³ J _{PC}	$\delta(C^3)$	${}^{3}J(P^{1}C)$	³ J(P ² C)	$\delta(C^4) s$	$\delta(P^1) \ s^b$	$\delta(P^2) s^b$		
36	53.10	162.5	44.25	6.2	60.08 dd	6.4	10.8	39.57	22.29	7.47		
37	49.79	164.2	49.93	8.1	56.34 t	7.1	7.1	39.85	22.82	7.57		
38	49.48	162.9	58.99	7.5	56.44 t	7.0	7.0	39.74	22.67	7.52		
39	50.43	163.9	56.12	8.4	56.87 t	6.9	6.9	39.86	22.90	7.55		
40	49.67	163.4	55.97	3.7	57.61 dd	6.3	9.6	40.10	22.27	7.47		

^aAll signals of alkyl, vinyl, and ethoxy groups are in the standard area. In the ¹H NMR spectrum, the signals of the C⁴H₂ fragments appear as multiplets in the range 2.9–3.0 ppm. In the ¹³C NMR spectrum of compound **40** δ_{C} (C=O) 171.04 s. ^bData of ³¹P {¹H} spectra.

			Calco	d (%)	Found (%)		
No.	Empirical Formula	Formula Weight	С	Н	С	Н	
1	C ₆ H ₁₆ NO ₃ P	181.16	39.78	8.90	39.54	8.82	
2	C ₇ H ₁₈ NO ₃ P	195.19	43.07	9.29	42.91	9.04	
3	C ₈ H ₁₈ NO ₃ P	207.20	46.38	8.76	46.12	8.64	
4	C ₉ H ₂₂ NO ₃ P	223.24	48.42	9.93	48.20	9.86	
5	C ₉ H ₂₀ NO ₅ P	253.24	42.69	7.96	42.52	7.87	
6	C ₁₀ H ₂₂ NO ₅ P	267.26	44.94	8.30	44.78	8.09	
7	C ₅ H ₁₄ NO ₂ P	151.13	39.74	9.34	39.59	9.26	
8	C ₆ H ₁₆ NO ₂ P	165.16	43.64	9.77	43.48	9.65	
9	C ₇ H ₁₆ NO ₂ P	177.17	47.46	9.10	47.23	9.03	
10	C ₈ H ₂₀ NO ₂ P	193.21	49.73	10.43	49.57	10.28	
11	C ₉ H ₂₀ NO ₄ P	237.24	45.57	8.50	45.43	8.42	
12	C ₁₀ H ₂₂ NO ₄ P	251.26	47.80	8.82	47.68	8.69	
13	C ₉ H ₁₈ NO₄P	235.22	45.96	7.71	45.81	7.64	
14	C ₉ H ₁₈ NO ₃ P	219.22	49.31	8.27	49.12	8.14	
15	C ₇ H ₁₆ NO ₄ P	209.17	40.19	7.71	39.88	7.62	
16	C ₉ H ₁₈ NO ₄ P	235.22	45.96	7.71	45.72	7.56	
17	C ₈ H ₁₈ NO ₄ P	223.21	43.05	8.13	42.86	8.02	
18	C ₉ H ₂₀ NO₄P	237.24	45.57	8.50	45.26	8.40	
19	C ₁₀ H ₂₀ NO ₄ P	249.25	48.19	8.09	47.92	7.96	
20	C ₁₀ H ₂₀ NO ₆ P	281.25	42.71	7.17	42.64	7.03	
21	C ₁₁ H ₂₂ NO ₆ P	295.17	44.76	7.48	44.65	7.40	
22	C ₁₂ H ₂₈ NO ₅ PSi	325.41	44.32	8.68	44.07	8.57	
23	C ₁₃ H ₃₀ NO ₅ PSi	339.44	46.04	8.92	45.85	8.76	
24	C ₁₄ H ₃₀ NO ₅ PSi	351.45	47.84	8.61	47.70	8.53	
25	C ₁₅ H ₃₄ NO ₅ PSi	367.49	49.02	9.33	48.89	9.26	
26	C ₁₁ H ₂₆ NO ₄ PSi	295.38	44.76	8.88	44.60	8.72	
27	C ₁₂ H ₂₈ NO ₄ PSi	309.41	46.58	9.13	46.40	9.01	
28	C ₁₃ H ₂₈ NO ₄ PSi	321.42	48.58	8.71	48.49	8.61	
29	C ₁₄ H ₃₂ NO ₄ PSi	337.46	49.82	9.56	49.68	9.47	
30	C ₁₃ H ₂₃ N ₂ O ₃ P	286.30	54.54	8.10	54.40	8.02	
31	C ₁₄ H ₂₅ N ₂ O ₃ P	300.33	55.99	8.39	56.08	8.26	
32	C ₁₅ H ₂₅ N ₂ O ₃ P	312.34	57.68	8.07	57.49	7.98	
33	C ₁₃ H ₂₃ N ₂ O ₃ P	286.30	54.54	8.10	54.32	7.97	
34	C ₁₄ H ₂₅ N ₂ O ₃ P	300.33	55.99	8.39	55.84	8.28	
35	C ₁₅ H ₂₅ N ₂ O ₃ P	312.34	57.68	8.07	57.52	7.92	
36	C ₁₂ H ₃₀ N ₂ O ₆ P ₂	360.33	40.00	8.39	39.78	8.45	
37	C ₁₃ H ₃₂ N ₂ O ₆ P ₂	374.36	41.71	8.61	41.56	8.53	
38	C ₁₄ H ₃₂ N ₂ O ₆ P ₂	386.37	43.52	8.35	43.26	8.28	
39	C ₁₅ H ₃₆ N ₂ O ₆ P ₂	402.41	44.77	9.02	44.58	8.94	
40	$C_{15}H_{34}N_2O_8P_2$	432.39	41.67	7.93	41.52	7.74	

TABLE 5 Elemental Analyses Data of Compounds

in 10 mL methylene chloride, a solution of 6 g of *N*-chloromethylpyrrolidone in 5 mL of methylene chloride was added under stirring. The mixture was heated to reflux, solvent was evaporated, and the residue was distilled to give 9.4 g of phosphonate **13**.

Phosphinates 14 was prepared analogously.

O,O-Diethyl N-Methyl-N-formylaminomethylphosphonate (15). A mixture of 10 g of diethyl *N*methylaminomethylphosphonate 1, 3.5 g of 95% formic acid and 30 mL toluene was refluxed with a Dean–Stark trap until the water release was complete. Then the solvent was removed, and the residue was distilled in a vacuum to obtain 8.5 g of phosphonate **15**.

Phosphonates 16,20 were prepared similarly.

O,O-Diethyl N-Methyl-N-acetylaminomethylphosphonate (17). A mixture of 8.9 g of phosphonate 1, 7 g of acetic anhydride, and 30 mL toluene was refluxed for 2 h. Then the solvent was evaporated, and the residue was distilled to give 8.8 g of phosphonate 17.

Amides 18,19,21 were prepared similarly.

O,O-Diethyl N-Methyl-N-[2-(trimethylsiloxycarbonyl)ethyl]aminomethylphosphonate (22). A solution of 10 g of acrylic acid in 20 mL methylene chloride was added with stirring a solution of 18.3 g of phosphonate **1** in 20 mL of methylene chloride. After 1 h, the solvent was distilled off, and 30 g of bis(trimethylsilyl)amine was added. The resulting mixture was heated with stirring at 120°C until ammonia ceased to evolve and then distilled in a vacuum to obtain 28.6 g of phosphonate **22**.

Compounds **23–29** were obtained in a similar way.

O,*O*-*Diethyl N*-*Methyl*-*N*-[2-(*pyridyl*)*ethyl*]*aminomethylphosphonate* (**30**). To a mixture of 21.7 g of phosphonate **1** and 10.5 g of 2-vinylpyridine, 7.2 g of glacial acetic acid was added with stirring and cooling to 10° C. After the completion of the exothermic reaction, the mixture was heated on a boiling water bath for 2 h. Then it was cooled, and 100 mL of diethyl ether and a solution of 8 g of potassium hydroxide in 40 mL of water were added with stirring. The organic layer was separated, the aqueous layer was extracted with diethyl ether (3 × 80 mL), and the ether extracts were dried over potassium carbonate. The solvent was removed, and the residue was distilled in a vacuum to obtain 18.3 g of phosphonate **30**.

Phosphonates **31–35** were prepared similarly.

O,*O*-*Diethyl N*-*Methyl*-*N*-[2-(*diethoxyphophoryl*)*aminoethyl*]*aminomethylphosphonate* (**36**). A mixture of 5 g of aziridine **D** and 6 g phosphonate **1** was heated for 2 h at $120-130^{\circ}$ C and then distilled in a vacuum to obtain 6.4 g of phosphonate **36**.

Phosphonates **37–40** were obtained analogously.

REFERENCES

- [1] Fields, S. C. Tetrahedron 1999, 55, 12237–12273.
- [2] Kukhar, V. P.; Hudson, H. R. Aminophosphonic and Aminophosphinic Acids. Chemistry and Biological Activity; Wiley: New York, 2000.
- [3] Ebetino, F. N. Phosphorus Sulfur Silicon 1999, 144– 146, 9–12.
- [4] Ebetino, F. N.; Bayless, A. V.; Amburgey, J.; Ibbotson, K. J.; Dansereau, S.; Ebrahimpour, A. Phosphorus Sulfur Silicon 1996, 109–110, 217–220.
- [5] Ratcliffe, R. W.; Christensen, B. G. Tetrahedron Lett 1973, 46, 4645–4648.
- [6] Solodenko, V. A.; Kukhar, V. P. Zh Obsh Chim 1989, 59, 2684–2688 (in Russian).
- [7] Troev, K. D. Chemistry and Application of H-Phosphonates; Elsevier: Amsterdam, 2006.
- [8] Prishchenko, A. A.; Livantsov, M. V.; Novikova, O. P.; Livantsova, L. I.; Petrosyan, V. S. Heteroatom Chem 2010, 21, 71–77.
- [9] Prishchenko, A. A.; Livantsov, M. V.; Novikova, O. P.; Livantsova, L. I.; Milaeva, E. R. Heteroatom Chem 2009, 20, 70–80.
- [10] Artamonov, A. A.; Rozenberg, B. A.; Sheinkman, A. K. Reactions and Methods of Investigation of Organic Compounds; Khimia: Moscow, 1964, 14, 173–298 (in Russian).
- [11] Osowska-Pacewicka, K.; Zwierzak, A. Synthesis 1996, 3, 333–335.
- [12] Stamm, H.; Gerster, G. Tetrahedron Lett 1980, 21, 1623–1626.
- [13] Lazukina, L. A.; Kukhar, V. P. Zh Obsh Chim 1988, 58, 939–940 (in Russian).
- [14] Kukhar, V. P.; Solodenko, V. A. Usp Chim 1987, 56, 1504–1532 (in Russian).
- [15] Rapko, B. M.; Duesler, E. N.; Smith, P. H.; Paine, R. T.; Ryan, R. R. Inorg Chem 1993, 32, 2164–2174.
- [16] Hilgetag, G.; Martini, A. Weygand- Hilgetag. Organisch-Chemische Experimentierkunst; Khimia: Moscow, 1968 (in Russian).